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We study the influence of restriction on Carr—Purcell-Mei-
boom-Gill spin echo response of magnetization of spins diffusing
in a bounded region in the presence of a nonuniform magnetic
field gradient. We consider two fields in detail—a parabolic field
which, like the uniform-gradient field, scales with the system size,
and a cosine field which remains bounded. Corresponding to three
main length scales, the pore size, L, the dephasing length, L¢, and
the diffusion length during half-echo time, Ly, we identify three
main regimes of decay of the total magnetization: motionally
averaged, localization, and short-time. In the short-time regime
(L, < Lg, Lg), we confirm that the leading order behavior is
controlled by the average of the square of the gradient, (VB,)?, and
in the motionally averaged regime (MAv), where Ls < L, Lg, by
(f dxB,)?. We verify numerically that two different fields for which
those two averages are identical result in very similar decay pro-
files not only in the limits of short and long times but also in the
intermediate times, with important practical implications. In the
motionally averaged regime we found that previous estimates of
the decay exponent for the parabolic field, based on a soft-bound-
ary condition, are significantly altered in the presence of a more
realistic, hard wall. We find the scaling of the decay exponent in
the MAv regime with pore size to be L3 for the cosine field and L$
for the parabolic field, as contrasted with the linear gradient
scaling of L¢. In the localization regime, for both the cosine and the
parabolic fields, the decay exponent depends on a fractional power
of the gradient, implying a breakdown of the second cumulant or
the Gaussian phase approximation. We also examined the validity
of time-evolving the total magnetization according to a distribu-
tion of effective local gradients and found that such approxima-
tion works well only in the short-time regime and breaks down
strongly for long times. © 2000 Academic Press
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1. INTRODUCTION

sian phase approximation (GPA) to the case of multiple CPMC
spin echoes3-5. The GPA, or the second cumulant, treatment
has been commonly used in the literatute4, 6, 7, 19. In the
study of systems with nonuniform magnetic fields, a fruitful
approach has been to employ eigenfunction expansion in th
basis of the system in the absence of the fiéld’¢1Q. These
results, long known for the Hahn echo, have been recentl
generalized for the CPMGLOQ, 17).

Although the material presented here partially overlaps witk
the work of Bergmann and Dunri@ and Brown and Fan-
tazinni (L1), our emphasis is different in that we consider some
simple field profiles in detail to understand the scaling of
relaxation rate with pore size. We also consider the behavior i
the “localization regime,” where the GPA breaks down.

NMR response in a constant gradient has been studied qui
extensively since most standard techniques for both diffusiol
measurements3(4, 12 and NMRI @2) involve the applica-
tion of a constant gradient field. Recent years, however, hav
seen the emergence of new methods employing strongly inhc
mogeneous fields for magnetic resonance microscopy, mo
notably the stray-field imagindL8), which is now widely used
in the study of diffusion in soil and concrete as well as of the
ingress of solvents into polymers. Large inhomogeneities ar
also generated in bore-hole tools used in geophysical applic:
tions (14, 15.

Even when the applied fields are homogeneous, the differ
ence in susceptibility of the constituent materials gives rise tc
a microscopically inhomogeneous fieltll( 1§. For example,
the susceptibility contrast between pore space and grains |
rocks or between tissue and fluid in biological samplEg (
poses serious problems in NMR imaging and relaxometry. Th
effects of these microscopic field inhomogeneities cannot al
ways be removed by appropriate pulse sequences. In fact, |
many cases they are exploited to diagnose abnormal tissu

The purpose of this paper is to carry on our previous stud¥8). In this light, it is clear that the study of diffusion in
(1) of the relaxation of the Carr—Purcell-Meiboom-Gillrbitrary inhomogeneous fields is important for the understanc
(CPMG) spin echo amplitude resulting from the combineithg of a host of current applications.
effects of diffusion and restricted geometries to the cases ofThe two simple field models we consider in this paper are
nonuniform gradients. We extend the work of Tarczon artie natural first step beyond the uniform gradient case: th
Halperin ) who computed the response for one echo (thgarabolic field (i.e., the gradient varies linearly) and the cosine
Hahn echo) in an arbitrary inhomogeneous field in the Gaugeld, which has the form identical to the first eigen mode of the
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Fourier expansion of the magnetic field in a simple on&.2. Relaxation Regimes for Hahn and CPMG Echoes
dimensional geometry. The choice of the cosine form was also, . . . . . .
: : . . In this section we give a brief summary of various regimes
motivated in part by the fact that the resulting eigenvalu . . .
. of decay as previously treated i, 6, 29. With the surface

problem bears some resemblance to the constant gradient case™ " ~. X .
o . . relaxativity set to zero, the attenuation of spin echoes due t
(19) and that the field is bounded. Accordingly, it captures ong . P . . .
characteristic of the microscopic local fields, arising from threestncted diffusion in a nonuniform gradient field can be char-
P : g aICterized by three lengths: the diffusion lendtl,= VDo,

susceptibility differences within the grain, which are in gener . . . .
. e : e sample sizél, s (we consider only one-dimensional sam
proportional to the applied field and result in a bounded tota .

es), and the dephasing length,

field. The effects of bounded and unbounded fields différ
dramatically in physical systems as shown by Sengl. (20).

In addition, the cosine field provides a simple example of a -~ D? 1/6_ Dié ve
field where the gradient at the walls vanishes, serving as an ¢l (vBy)zy2| |9
unambiguous test of the prediction for the lowest order cor-

rection due to restriction to the short-time decay10). whereD, is the diffusion coefficients is half the echo time,
Now let us give a brief outline of the paper. In Section 2 wg, 4 g2 = (VB,)’ is the mean-squared gradient. The overbar

give the general analytical framework for the solution of thgjgpifies a spatial average. The diffusion length is a measure «

Torrey—Bloch equation and briefly recapitulate the varioyge distance traveled by a spin in the timeThe dephasing

asymptotic regimes for the CPMG and the numerical procedygggth gives the distance over which a spin has to diffuse t
employed. In Section 3 we discuss certain results for ﬂ&"ephase by 2 radians.

transition_region betwe_en the short-time and motionally aver- corresponding to these three length scales, there are thr
aged regimes. In Sections 4 and S, we present the numerigampiotic rates of relaxation of the spin echo amplitubje (
and analytical results for the parabolic and cosine fields, 1§atermined by the shortest length scale. Accordingly, we dis
spectively. In Section 6, we investigate the applicability of thﬁ’nguish three regimes: short-time wherg < L, Lo, mo-
local gradient approximation (LGA) in the case of our twqflona"y averaged wherks < Lo, Lg; and localization where

(3]

fields, and we conclude in Section 7. Le < Lo, Le
The short-time and motionally averaged regimes can b
2. THEORY treated within the GPA, whose validity in these regimes can be
physically motivated as follows. As noted above, at short time:
2.1. Torrey Equation and the Boundary Condition t, only a small fraction of the spins, on the orderiD,t)

L L ) .SV, interacts with the walls5/V, being the surface to volume

We begin with a steady-state magnetization aligned with thgyi andp, the free diffusion coefficient. Accordingly, we
applied magnetic field in the-direction. Following am/2  o,h0ct the GPA to hold. In the motionally averaged regime
pulse, the transverse magnetizatidf(x, t) = M(x, 1) + = nce 4 spin traverses a pore several times it loses the memc
iM,(x, 1), obeys Bloch’s equation, as modified by TOm@)( ¢ \yhere it started. At long times then, the phase accumulatio
to include diffusion, of an individual spin can be represented as a sum of man
small independent phase accumulations over a few traverss
aM(x, t) PM(x, t) of the pore. Hence, we may expect that the GPA can b
ot~ Doz —1vBAXIM(x, 1),  [1] reasonably good at both short and long times outside of th

localization regime.

First we consider the GPA and its two limiting cases. The
with the initial condition M(x, 0) = const. A factor of Bjoch-Torrey equation is solved exactly within the GPA for
exp(—iwo — 1/T4)t has been divided out d¥i(X, t), where the CPMG by Bergman and Dunn iaQ) (see Egs. [3.2] and
wo = yB, is the average Larmor frequency is the bulk [3 3] therein) following Brown and Fantazzini in{). Here we
decay time constant, aria, is the diffusion coefficient, which recast the solution in a slightly different form and correct a
is a function of temperature and pressure. The boundary c@pographical error (the same equation is derived by a differen

dition on the pore wall is method in 23):
IM(x, 1) [M(an)] JEPRR 2[ (ﬁoxa - tanf(ﬁoxa))
_ — = b |22 S
MY My =0, 2 M(0) 2 b7 20 g )2

tant?(DoA,) — 2(1 — sechiD,A,))
- (BoX.,)?

where the operatai/dv is the outgoing (from pore into grain)
normal derivative ancp is the surface relaxativity. In the
remainder of the paper we take= 0, which is equivalent to -

imposing the reflecting boundary conditions. X(1-(-1 ne_anOA”)} (4]
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whereb, are the expansion coefficients of the magnetic field ira
an eigenbasisj, are the corresponding eigenvalugs,= =
L3L4/LE is the dimensionless gyromagnetic ratio, dbgl = ~ 3095
(Lp/Ls)? is the dimensionless diffusion constant. (See Sectiorg* 0.99
5 for an application of Eq. [4].) Fan = 1, i.e., the Hahn echo, go‘ggs,
Tarczon and Halperin2j derive an equivalent of Eq. [4] for =
one dimension.
The leading term of the short-time limit of Eq. [4] is

1o

M(2n7) B

Lg/Lg=0.10
M(0)

Lytg=0.12

e —(2n/3)(Lp/Lg) 6_ [5]

o
[3)

20)/M(x,0)f T

For slightly longer times, but still when few spins make contact~§>£
with the walls, the lowest order correction to the CPMG- —

generalized Hahn result, Eq. [5], is proportlonaILtQ’_LS. It 0 02 cddd on |amc2'?x/|_ )
was computed for the Hahn echo B) @nd can be obtained for s
the CPMG from Eq. [4]: FIG. 1. Position dependence of the transverse magnetization at the firs
echo in a parabolic magnetic field (profile drawn in dashed lines in arbitrary
M(2 units) in the localization regime at two different echo times: (a) shiost€
(2n7) = g~ (2/3)(Lo/Le) 5(n+C(n)(Lo/Ls)(g2/g?) [6] Le, Ls) and (b) longerl(, ~ L¢ < Lg). The signal accumulates near the walls
M(0) ) and near the field minima, decaying fastest in regions of large gradient awa
from walls.

HereC(n) is a constant that depends only on the echo number
and has been calculated explicity) (9> = 1/Ls [ dx|aB/a x|?
as before, and equation is valid only in one dimension. The leading-order
correction can be computed by taking the long-time limit of
g2= S§ (av> [7] Finally, we consider the case where the GPA breaks dowr
a0 the localization regime. Here the spins diffuse several depha:s
ing lengths in the course of a measurement, dephasing by
is the surface average of the normal derivative of the fieldery large amount. Their net contribution to the total magne-
whereS is the pore surface area. The physical implication afzation vanishes, except for those located near the field min
the appearance af,, which captures the dependence on thiena and near the boundaries, which, because of reflection, se
geometry of the interface, is that often the presence of paea-smaller change in the magnetic field and consequentl
magnetic impurities near pore boundaries makes the field at & hase less. Using this approximation, one can try to solve tt
pore wall ConSiderably different from that in the interior. eigenva|ue prob]em obtained by Separating variables in Eq [1}
Next we consider the motionally averaged (long-time) limihe |ong-time decay rate being determined by the lowest eig
of the GPA. Here the spins typically diffuse several times thg,yaiue in the presence of the magnetic fi€@d1Q. In other
dimension of the pore, and any magnetic field inhomogeneiti@%rdsy the GPA treats the magnetic field inhomogeneity per

are averaged out by their motion. The asymptotic form of thg ., tively. while in the localization regime, it must be treated
decay exponent was derived for an arbitrary field for the Halén

. . . ; actly.
echo in one-dimensional restricted geometry by Tarczon anéT 4

. : o lend justification to the above qualitative picture of the
:Salperln ©) and can be obtained for the CPMG from Eg. [411ependence of the magnetization on the local gradient an

distance to the boundaries, we plot in Fig. 1 the transvers

. magnetization as a function of position at two different times in

0 M(2nT) _on L5LS D |k1a|2 a parabolic magnetic field with the tip of the parabola at the lefi
Ay wall. Magnetization accumulates near the left-hand wall, where

the field minimum coincides with the proximity of the wall. It
2n7y? ( X 2 decays faster with increasing gradient, until the effects of the
f Bz(x’)dx’) , [8]
0

presence of the right wall counteract the trend, resulting in
pronounced dip in the middle. In Fig. 1b, where the diffusion
length, Ly, is on the order of the dephasing length,, the
where 2 is the time between successive pulses and the magnetization has decayed virtually to zero near the dip while
overbar denotes a spatial average as before. The last part of teisaining sizable near both walls.
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(a) Localization regime: relative height of the first eclmo={ 1)
in a linear field (open circles) and “mixed” field (labeled &y, with identical

asymptotic regimes in much the same way regardless of th
precise form of the magnetic field present. In other words, the
behavior ofM(t) outside of the localization regime is governed
entirely (in one dimension) by the spatial averages of field-
related quantities, not by any other local details of the structur
of the field itself.

4. PARABOLIC FIELD

In this section we study the various regimes for the case o
the parabolic field, B, + g.x + g,x?)2. First consider the
effect of the presence of walls. Le Doussal and S golved
exactly the free diffusion Torrey equation for this field. Here
we find their analytical results to be in excellent agreemen
with our computer simulations as long as the walls are fau
away, i.e.,Ls > Ly, Ls. They also simulated the effect of
restriction by imposing a “soft” boundary condition by adding
a restoring potential to the diffusion equation and solving it as

averages{B./9x)” and (/ dxB,)*. Here the precise field landscape, not jusgn unbounded problem. Within this model, in the motionally

the averages, is important, resulting in different decay rates (slopes). T, :
free-diffusion result, Eq. [5], the same for both fields, is drawn as a dashed Ié\e‘;eragecl regime, they found that the decay rate

for comparison. (b) The two field profiles plotted, in arbitrary units, as a
function of position in the pore.

1 M(2nT) v?g3Le
2nt ( M(0) ) 8D, (9]
2.3. Numerical Method
The numerical procedure we use to solve the Torrey—BIocf:%r g: = 0/in sharp contrast with Eq. [8] which gives
equation is exactly the same as in our previous wajkaad is
outlined there in detail. We need not repeat the details here. 1 M(2n1) 8y%g5L3
2nr ”( M(0) ) ~ 945D, ' [10]
3. INTERPOLATION BETWEEN REGIMES
Although the long and the short time limits of the solutions x10™* . ] i

of Eq. [1] for different field profiles and boundary conditions _ °--.... ° ﬂ?gg;‘:“g |
have been studied extensively, no tractable analytical expreS-0.5- °ee -+ Free
sions exist for the intermediate regimes. In this section w& _i} 0 MAv.(Leading) |
present the results of a numerical experiment that sheds sor§e_1 sl | °°oo.° |
light on the behavior oM(2n7) in the transition region. We = ' °°°o,°
constructed two qualitatively different fields with identical 2 L ® LY
averages,dB,/0x)” and ([ dxB,)®, which guarantees the same 0 0.05 LY 0.15 0.2
asymptotic behavior in the short-time and motionally averaged x107° ve
regimes. In particular we toolB,(x) = C,cos(@x/Ls) + 0 . ' ' ' " o LinearField ™
C,x* — 3L3C, andB,(x) = gx — 3gLs, whereC, = 0.6508 Sl .- ?4':2" Field ]
gLsandC, = 0.608g/Ls, chosen to make the corresponding % H = MAv. (Leading)
averages for each field equal. Both fields are plotted in Fig. 2b.&2[ 1
Figure 2a shows that in the localization regime, where we don’'t € s} & 1
expect Eq. [8] to hold, the decay exponent approaches different L . ) . ) \ ,

0.5

—_

values since it is determined by the lowest eigenvalue, which, 0
in turn, depends on the local structure of the field inhomoge-
neities. This is to be contrasted with the regimes where therIG. 3. Relative height of the first echm(= 1) in the two fields shown
GPA holds. In the short-time and motionally averaged regime® Fig. 2b, linear (open circles) and “mixed” (labeled by), with identical
graphed in Figs. 3a and 3b, respectively, magnetization 4 B,/ox)® and (| dxB,)®> averages in the short-time regime (a) and the

2.5 3.5

15 2,
(Lot

- otionally averaged regime (b). The free-diffusion result, Eq. [5], is drawn as
proaches the same limits, as expected. Remarkably, howey Y g gime (b) a Bl

ashed line, and the motionally averaged regime leading asymptotic, Eq. [8

the signal for both fields is virtually identical fail times. This a5 a solid line. Note that both field profiles result in virtually indistinguishable
suggests that the system smoothly “interpolates” between tugals forall time.
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. ) . ) ) Localization regime: decay rate of the magnetic density signal at
FIG. 4. Motionally averaged regime: relative height of the first echoe=(

] o \ - ] _ 1 the first echo in the parabolic field,(x) = g.x*. Simulation results (open
1) in a parabolic field. Simulation (open cwclgs) plotted against the pl’edlCtIOEﬁ»des) are plotted vs the prediction of Le Doussal and Sen’s soft-boundan
of the soft-boundary model, Eq. [9] (dashed line), and the GPA with hard wallgygel, Eq. [9] (dashed line). The'g, dependence indicates the breakdown of
in the motionally averaged regime, Eq. [10] (solid line). Note the dramatif, gpA.

failure of the soft-boundary model.

field, on the other hand, to be discussed in detail in the nex
which is about a factor of 15 less than the result of Le Dousssdction, the presence of the wall will be less noticeable in the

and Sen. short-time regime due to the vanishinggfand the resulting
Our numerical simulations (see Fig. 4) confirm the prediguppression of th& /L s correction.

tion of Eq. [10] demonstrating that the presence of the real wall
substantially reduces decay. Although Le Doussal and Sen’s
decay exponent, Eq. [9], displays the correct pore-size scaling,
LS for the parabola v& ¢ for the linear gradient, it fails to give  In this section we study the cosine field,cos(mx/Ls)Z.
the correct magnitude of the decay rate which is in agreemé¥gte that the field is bounded B, which is independent of
with Eg. [10], the asymptotic mean-field result based on
Eq. [8]. a

In the localization regime, on the other hand, the soft-_
boundary model does produce the correct behavior, giving °©

5. COSINE FIELD

Cog T " ' T
V3g,vD, for the decay rate in good accord with our simula 5 %“000%% 2. g‘r:?;lrjtl?:?nl GPA
tions (see Fig. 5). g %9%9%

Now consider the short-time regime and the correctior§ ~>°[ 00a0,,
due to pore surface to volume ratio. In the short-time rek °°°°oooo°
gime, with the walls placed at the origin andlatandg, = & . ) ) X B
0, we computeg® = 4g’L3 andg® = 2g;L% and Eq. [6] % ~1005 10 20 30 40 50
; . Echo number (n)
gives b _x10°
OM ' ' l o Simulaiion
—_ 00"'990 === Fit Curve
M(2n7) 2 (Lp)\° Lo 5 See o C(1) =-2.5857
oo ) =5 () e rsem()). - Saq e
i “0_“.0.
=0
Our numerical simulations, as shown in Fig. 6, are in excel- Y, 05 1 15 2 25 3 a5
lent agreement with Eq. [11]. Note the enhancement of the (Ll x107"°
impact of the boundary effects due to the increased curvature

. . . . FIG. 6. (a) Short-time linear correction coefficieB(n) for the parabolic

of the field at the wall relative to the umform—gradle_nt 9ase' 'ﬁbm case as a function of the echo number. Simulation results (open circles
that caseg = g,, and consequently the factor multiplying thjotted vs the GPA theory, Eq. [11] (dashed line). (b) Plot of the actual
first-order correction i /L sis 1 instead of 1.5. For the cosinesimulation data for the first echo from whi€k(1) was extracted.
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the system size as opposed to the linear and parabolic fieldsrom the definition of dephasing length, Eq. [3], we find for
which grow withLs. To obtain the equations governing thehe cosine field
short-time and motionally averaged regimes, we use Eq. [4].

As the eigenbasis for the expansion in Eq. [4] we take the 2 Dyl s
eigenfunctions oW with the reflecting boundary conditions, at L= \wT
%X = 0 andX = 1 in dimensionless coordinatés= x/Lg, oY

namelyWV, = N, cos@maX) wherea = 0,1, 2, ..., andN, is o i , , )
the normalization constant. Theb, = [} B(X)W(X)dx which in conjunction with Eq. [14] shows that the long-time

vanishes for alk # 1. The sum in Eq. [4] reduces to a Sing|eexponentvL§. This indicates that the dependence of the signa
term decay rate with pore size is markedly less for the cosine fiels

than for either the linear<L¢) or the parabolic £L2) field.
. . From the dependence of the exponent rikB,)* we expect
M(2nT) s 2 Dym? — tanHDym?) this result to hold more generally for the case of bounded v:
—In[ M(0) ] =Y { ( (B2 ) unbounded fields.

~ ~ In the localization limit the GPA is not valid. The eigenvalue
N tani?(Dom?) — 2(1 — secliDom®)  equation derived from the Torrey—Bloch equation, Eq. [1], for

b
5
\"2

(Dym?)? the cosine field in scaled coordinates is the Mathieu equatio
) (19, 25:
X (1-(-1) nezﬂDO’*z)]. [12]
d?m, . .
dyz + [EI - 2q Coizy)]mi = 01 [15]

The short-time limit of Eq. [12] shows that the linear

correction inLy/Ls vanishes in agreement with Eq. [11lwhere§y = wx/2Ls, q = i[V2 Lg7Le]% E = (4/7?)(Ld/
given thatg, = 0 in one dimension for this particular field|_,)?E,. The general solution for the magnetization in terms of
profile: the eigenfunctionsn; is

M(2nT) M(x, t) = > cmi(x)e Bt
("o )

2 L) ® 3 L\ 2 In the localization regime|q| > 1, and we use a largg-
~ = () [n - —(1- (-1 n)w2() } [13] expansion for the lowest eigenvalue for rga25), which we
3\Le 8 Ls verified numerically to hold for large imaginaryas well:

We found very good agreement between the analytical ex- E,= —2q+ 2\@_

pressions in Egs. [12] and [13] and our simulations for both

the short-time and the motionally averaged regimes. No . . ~

that in Eq. [13], the leading order correction vanishes for th-}jﬁe rate of deca_y Is then Qetermlned by the real paftof-

even echoes and for odd echoes is proportionaltgl(s)?, 2lq|, and we finally obtain

as opposed td p/Ls correction for a field with a constant

gradient. On the other hand, for any field with an odd M(2n7) % @~ @mAMn(LdLy VALolle)?

reflexion geometry, e.g.Bysin(mx/Ls), the leading order M(0) '

correction due to restriction would be identical to that for

the constant gradient case. In Fig. 9 we plot the general GR#fe constant of proportionality depends on the integrals of th

solution for the cosine field, Eq. [12], vs simulation in th&igenfunctions and their normalization consta#)t Qur sim-

short-time (Fig. 9a), and motionally averaged (Fig. 9h)lations for the localization regime confirm the anticipated

regimes. exponent (see Fig. 7). A noteworthy characteristic of Eq. [16]
Itis instructive to consider the long-time limit of Eq. [12] injs that the decay exponent varies lag*? and henceV/B,,

order to examine the scaling of the decay rate with the sizeigtiicating the breakdown of the GPA, and varies inversely

[16]

the pore: with V/Ls, unlike for the case of the linear and parabolic fields
for which it is independent of 5 in the localization regime.

M(2nT) Dependence of the localization exponent on the pore size me

| ( M(0) ) be a general feature of bounded fields. Recall that the bounde

s . , fields commonly originate from susceptibility variations within
= 2n (LD> ( LS) [ 2n+1 (Ls) ] [14] the sample, in contrast to the unbounded fields originating fron

m*\Ls) \Lg - 27 \Lp externally applied gradients.
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FIG. 7. Decay rate of the first echo for the cosine field in the localization (LD/LG)

regime as a function df ;/Ls. Simulation results (open circles) are compared ) ) o
with the lowest eigenmode of the Torrey—Bloch equation as computed in EqF!G- 8. Comparison of the local gradient approximation (LGA) for the

[16] (dashed line). TheV/Lo/Ls and henceV/B, dependence implies the parabolic field (dot—dashed line) with the simulation data (open circles) anc
breakdown of the GPA. the GPA limits (free diffusion in solid and leading order motionally averaged

in the dashed line) for the first echo in (a) short-time and (b) motionally
averaged regimes. Note that the LGA performs better than the leading term c

the short-time GPA limit (free diffusion), Eq. [5], but breaks down strongly in
6. LOCAL GRADIENT APPROXIMATION the motionally averaged regime.

It is a common practice2@, 27 to invoke an average local field, P(g) = 2L¢/Bom” [1 — g’L&/#°Bj] %, and the LGA
gradient in order to capture the effects of the inhomogeneitieecomes
of the magnetic field. We test the range of validity of this
ansatz for the cosine and parabolic fields. M(27) — 14(B?)

At very short times, it is legitimate to represent an arbitrary M(0) 0 '
field by an effective local gradienjes = g, + 29X + - - -.
If the diffusion lengthL , is small compared to the lengths ove
which g varies, then locallyM(x) obeys the CPMG-gener

yvherel0 is the zeroth-order modified Bessel function of the

alized Hahn's formula, Eq. [5]. Integrating over the entire@ ; . : : —
sample, we obtain = : |
\gf o Simulation
=-2f — Free ' b
M(2nT) R %_3_ """"" GPA Exact o, |
_ —2/3y2g2,Donr3 = x  Local Grad. Appx. ‘o,
M(O) - J P(geﬁ)e Y Gen dgeﬁy [17] S _4f PP Q,O'Q ]
‘o,
0 0.01 0.02 003 0.04 0.05
whereP(g.¢) is the distribution function of the effective gra b x10° Lolks)
dients, P(g) = [¢°dx8[g — dB(x)/dx]. Although strictly OFRoo, ' o Simulation 1
. . —_ 'O,
valid only for the short times, Eq. [17] has been frequentlys_2 ©0.6.4 — Free 4
lied over the whol f time. For th bolic fieldS P00, GPA Exact
applied over the whole range of time. or1 e parabolic fields | 0.0, x Local Grad. Appx. |
5(_-:-tt|ng 0, = 0 as beforeP(g) = (29,Ls) 7, and Eqg. [17] % '0-0.0,0’01
gives =l 0., ]
—gl '0‘0'0.0, B
0 0.5 2

— 1
M(t) 7w (Ly/Ly)
M(O) = ﬁ erf(B),

FIG. 9. The local gradient approximation (LGA) for the cosine field
(marked byx) vs the simulation data (open circles) and the GPA limits for the

. . first echo in (a) short-time and (b) motionally averaged regimes. Note that du
2 _ 2 6
whereB” = 3(Lo/Lo)", and erf@) is the error function. Note to the vanishing of the first-order short-time correction for this field, the LGA

that in the limit of smallg this correctly reduces to the leadingyoes not even outperform the free-diffusion result while failing, as for the
term of the CPMG short-time formula, Eq. [5]. For the cosingarabolic field, for long times.
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TABLE 1

A Compilation of Main Results
| M(2n7)
n M(0) Short time MAv Localization Bounded
Linear —2(Lo/Le)®(n + C(n)(Lo/Ly)) ol g xg®? No
Parabolic — 2(Lp/Lg)*(n + 1.5 C(n)(Lp/Ls)) «lLd xg,”? No
Cosine — 2 (Lp/Le)®(n + O(Lp/Lg)) o« 2 < VBylLs Yes
LGA Works Fails Fails
Relevant avg. ¥B,)? (J dxB,)?

first kind, andg is defined as before. In Fig. 8 we compare our L¢, but for a bounded fieldXB)? is independent of s. If we
simulations in the short-time regime (Fig. 8a) and motionallake the correlation time in the MAv regime to bé/D,, we
averaged (Fig. 8b) regime with the LGA prediction. obtain the decay rates dsi, L, and L3 for the constant
Apparently, for short times, the LGA works quite well,gradient, parabolic and the bounded field, respectively.
better than the leading order short-time CPMG result. For longIn the motionally averaged regime we also verified that the
times, however, in the motionally averaged regime, the LGgoft boundary condition, as implemented by Le Doussal ant
formula fails dramatically. For the cosine case (see Fig. 9), t&en @4), does not adequately model a realistic wall, predicting
LGA does not even work better than Eg. [5], which can ban excessively rapid rate of signal decay.
attributed to the vanishing of the first correctionlip/L for Of greatest practical interest experimentally are the short
the cosine field. Thus it seems that the LGA merely improvéisne and motionally averaged regimes where our numerica
upon the short-time result to roughly first ordellig/Ls and is  simulations suggest that the evolution of the signal is largely
clearly not applicable at long times. determined forall time solely by the two “moments” of the
magnetic field, YB,)” and (/ dxB,)?, and not by the details of
its local structure.
7. CONCLUSION Finally, for the two fields under consideration, we tested the
applicability of the local gradient approximation, a procedure
Extending previous work on constant gradients, we hawehich time-evolves the magnetization according to some loca
investigated the three main regimes of decay of magnetizatieffective gradient, and found that it holds only in the short-time
in a CPMG pulse sequence, the short-time, the motionallynit and is invalid for longer times.
averaged, and the localization, for a parabolic and a cosineg~or easy reference we highlight the major points of our
field. The cosine field is of particular interest because it isanalysis in Table 1.
bounded field and thus can be thought of as a crude model of
microscopic field inhomogeneities originating near pore
boundaries due to strong susceptibility differences near the
surface and resulting in bounded fields. We found that the GPAye are grateful to Scott Axelrod and Axel Andre, whose work on the
is applicable to both the short-time and the motionally avegonstant gradient case laid the foundation for this paper. Work at Harvard wa
aged regimes for both fields, while breaking down in th&pported in part by NSF Grant DMR 94-16910.
localization regime, where in both cases the long-time decay
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